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Abstract—Wireless system design on the physical layer
is usually evaluated using comprehensive channel models.
However, there is still a lack of publicly available stochastic
channel models tailored to industrial use cases, which are
recently considered more frequently. This paper presents
the derivation of such a channel model for the 5 GHz
ISM band and its parametrization. The frequency-selective
behaviour is modeled by the Saleh-Valenzuela model. Based
on a measurement campaign, the parameters of this model
for a factory environment are determined and published
the first time for the 5 GHz ISM band. Spatial correlation is
modeled by the Kronecker model. The temporal variation
of the channel is based on a theoretically derived Doppler
spectrum assuming Laplacian distributed angle of arrivals.
In addition to the description of the model components, key
issues and common mistakes while constructing a channel
model for industrial applications are discussed in order to
advance the design and the deployment of future wireless
industrial communications systems. The derived channel
model is used in IEEE 802.11ax link layer simulations.
It is shown that for industrial use cases specially tailored
channel models are needed.

Index Terms—channel model, Saleh-Valenzuela model,
power delay profile, industrial environment, WLAN

I. INTRODUCTION

Wireless communications systems have become in-
creasingly common in industrial applications in recent
years. The scope of application of wireless systems
in this context is diverse and reaches from monitoring
to closed-loop control scenarios. Wireless solutions are
needed to enable mobile applications, e.g., automated
guided vehicles, which allow to flexibly transport factory
goods. Another possible use case is the streaming of
status information about current machine conditions.
Furthermore, wireless systems come along with less
maintenance in moving machine parts as established
solutions with trailing cable systems and sliding contacts
[1]. Thus, wireless communications systems also offer a
cost advantage compared to their wired alternative.

Special solutions for the industry, which can deliver
ultra reliable low latency communications (URLLC) and
could therefore be advantageous for industrial com-
munications for safety-critical and closed-loop control
applications, are not available yet. The fifth generation
(5G) of mobile communications systems has gathered
great interest in this field since transmission latency

and dependability are main pillars of the development.
Existing approaches for factory automation include, e.g.,
WirelessHART based on IEEE 802.15.4 or the iWLAN
system built on Wireless Local Area Network (WLAN).
Both systems operate in unlicensed frequency bands
(ISM bands), which adversely affects the possibility of
interference from other users. For WLAN systems, the
5 GHz ISM band is of special interest since compared
to the 2.4 GHz band a higher bandwidth is available and
less interference can be expected.

The requirements towards transmission latency and
dependability in industrial applications are strict and
need careful evaluation while developing and deploying
a communications system. The dependability highly de-
pends on the physical layer (PHY), which is therefore
especially important in the analysis. Wireless system
design requires models to simulate effects that occur
while transmitting over the channel to design and test the
system. Various stochastic channel models are available
for different propagation environments and frequency
bands. However, the channel conditions in industrial
environments are highly characteristic compared to res-
idential or office environments since they are charac-
terized by a great quantity of reflective metal surfaces.
Therefore, specially tailored industrial channel models
are required in order to develop a suited PHY for
industrial use cases. For industrial environments only a
few channel models have been developed yet. Extensive
studies for ultrawideband (UWB) transmissions have
been conducted, proposing channel models with different
levels of complexity and different frequency ranges, e.g.,
[2]. Another popular example is the 802.15.4 channel
model, which supports industrial environments and can
be used for UWB transmissions within a frequency range
from 2 GHz to 10 GHz. A channel impulse response
(CIR) model for factory buildings at 1.3 GHz can be
found in [3]. Unfortunately, no channel model for indus-
trial environments is proposed for the 5 GHz ISM band
yet, which is especially important to WLAN systems.

In this paper, a channel model for industrial indoor
environments for transmissions in the 5 GHz ISM band
is developed. It combines a path loss (PL) model,
log-normally distributed shadowing in regards to large
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Fig. 1. Overview of the chosen submodel components.

scale fading, and a model for small scale fading. Small
scale fading comprises submodel components for tem-
poral correlation, the frequency-selective behaviour of
the channel, and spatial correlation to support multiple
antenna systems like WLAN systems. These submodel
components are conducted in Fig. 1. Furthermore, a
measurement-based parametrization for a small factory
environment is determined. The described framework
allows to extract model parameters for a CIR model from
transfer function measurements. A further contribution
of this paper is to emphasize key issues and common
mistakes while combining model components to an over-
all channel model and during its parametrization. This
paper shows that results obtained using channel models
for industrial use cases can differ greatly from currently
available models.

II. PATH LOSS AND LARGE SCALE FADING

The decrease of signal power over distance is referred
to as PL. Variations in the received signal power over a
large distance are modeled as large scale fading usually
only considering shadowing. A common PL model also
including shadowing is given by

PL(d) = PL(d0) + 10n log

(
d

d0

)
+X for d ≥ d0 ,

(1)
where PL(d) describes PL and shadowing in dB at dis-
tance d. The PL is modeled by means of the reference PL
PL(d0) measured at distance d0 and by the PL exponent
n. The PL exponent n determines the decrease of power
over distance d. The variable X models the influence
of shadowing and is on a logarithmic scale additively
superimposed to PL. It is well-established to model
shadowing by a zero mean log-normal distribution. Its
distribution parameter is given by σX .

Equation (1) is an empirical model, hence, the model
parameters are determined by measurements. For indus-
trial environments and the 5 GHz ISM band, measure-
ments within factories were carried out and the model
parameters were estimated in [4]. The authors distinguish
between three topologies: line of sight (LOS) connec-
tions, obstructed line of sight (OLOS) connections with
industrial inventory on receiver height of 2 m as well as
on transmitter height of 6 m are considered. The authors
tested different model variants, preferring the variant
without assumption of free space propagation to the
reference distance d0 = 15 m. The estimated parameters
therefore are reproduced in Tab. I.

III. SMALL SCALE FADING

Rapid changes of the received signal power on a small
time scale are described under the term small scale fad-
ing. This includes effects of multipath propagation and
also Doppler frequency shifts induced by movement. The
statistics of small scale fading in industrial environments
can be modeled as Rician fading [4]. In [4], values of
the Rician K-factor were estimated for different factory
environments. The values postulated by the authors for
an estimator using the least squares (LS) method are
summarized in Tab. I.

A. Frequency Selectivity
A communications channel is frequency-selective if

signal copies with different propagation delays overlay,
e.g., as a result of multipath propagation with different
path lengths. All multipath components (MPCs) arriving
at the same time at the receiver are denoted as a tap.
The system-theoretical description of the mobile radio
channel as a linear, time-variant (LTV) and causal system
can be used for modeling. When only considering small
scale fading this is represented by

y(t) = h(t, τ) ∗ x(t) =

∫ ∞
0

x(t− τ)h(t, τ)dτ , (2)

where y(t) is the receive signal and x(t − τ) is the
transmit signal x(t) delayed by the propagation delay
τ . The factor h(t, τ) represents the time-variant impulse
response of the radio channel, where h(t, τ) can be
interpreted as an infinite sum of all taps. To allow the
implementation, h(t, τ) has to be restricted to a finite
number of taps U . Then, h(t, τ) is given by

h(t, τ) =
U−1∑
i=0

h(t, τi)δ(τ − τi) ,

=
U−1∑
i=0

βici(t)δ(τ − τi) , (3)

where the i-th tap is characterized by the propagation
delay τi and the amplitude and phase shift of the
tap h(t, τi). The complex value h(t, τi) can further be
divided into a complex factor ci(t) of the time-dependent
stochastic fading process – in this paper modeled as
Rician fading – and the mean path amplitude βi as shown
in (3).

A widely accepted model for τi and βi for indoor
communications is the Saleh-Valenzuela (SV) model,
proposed in [5]. The authors assume that MPCs arrive
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Fig. 2. Overview of the SV model assumptions.

in groups, so called clusters. The arrival time of the l-th
cluster is denoted as Tl, while the arrival time of the k-th
tap within the l-th cluster is denoted as τkl. Hence, the
relationship to the propagation delay τi of the i-th tap is
given by

τi = Tl + τkl . (4)

They further propose that the arrivals of clusters and
also taps within each cluster are modeled as a Poisson
process with exponentially distributed interarrival times.
The distribution parameters are the cluster arrival rate
Λ and the tap arrival rate λ, respectively. In short, the
authors state that the arrival times of MPCs can be
expressed by

p(Tl|Tl−1) = Λ exp(−Λ(Tl − Tl−1)) for l > 0 ,
p(τkl|τ(k−1)l) = λ exp(−Λ(τkl − τ(k−1)l)) for k > 0 .

(5)

To model the power of the cluster arrivals and the
power of taps within each cluster the authors propose
exponential power decays. The exponential decay is
characterized by the cluster power-decay time constant
Γ and the tap power-decay time constant γ, yielding

β2
i = β2

0 exp (−Tl/Γ) exp (−τkl/γ) . (6)

A schematic summary of the model assumptions is
given in Fig. 2. Values for the SV model parameters
Λ, λ, Γ and γ for different environments and frequency
ranges can be found in the original model publication
[5] and were re-estimated in many other publications.
For industrial communications, parameter estimation was
carried out mainly for UWB transmissions at various
frequency ranges. However, for the 5 GHz ISM band, no
parameter estimation is published yet to the best of our
knowledge. However, measurement data, which can be
used for the parametrization, is publicly available, e.g.,
the measurement campaign in [6]. Therein, the channel
gain was measured discretely over time and frequency in
a small hall with an extension of roundly 10 m × 30 m
containing industrial inventory. The measurement was
carried out at 5.8 GHz center frequency with a span of
1 GHz, which is close to the 5 GHz ISM band. The dura-
tion of one measurement was 17 s during which a person

was moving once back and forth in front of the receiving
antenna. Apart from this, the environment was static.
At any time the authors observed an OLOS connection.
They measured at three different transmission distances
3.1 m, 10 m, and 20.4 m.

The SV model parameters can be estimated under use
of the power delay profile (PDP), which characterizes
the connection between transmission delay and channel
gain. To obtain the PDP from a measurement of channel
gain over frequency, a conversion under use of the
Bello functions can be done: The input delay spread
function, which is the square root of the PDP, can be
determined by calculating the inverse Fourier transform
with respect to frequency of the time-variant transfer
function. Since only discrete data is available, the inverse
discrete Fourier transform (IDFT) has to be used to
calculate a sampled version of the input delay spread
function. In this discrete version, the exact position of
a MPC is not directly visible. Therefore, MPCs have to
be identified in an additional step.

The identification of MPCs is difficult since the
discrete time-variant transfer function only consists of
a finite number of samples. This equals rectangular
windowing in time domain, also affecting the input delay
spread function as the different MPCs are convoluted
with a sinc-function. The challenge is that the main
lobe of the sinc-function belongs to a MPC which
must be identified, while the different side lobes shall
not be identified as MPCs. Furthermore, the side lobes
cause amplitude errors in adjacent MPCs. Instead of
rectangular windowing alternative windowing functions
can be used. The windowing function has to be chosen
carefully as a trade-off between the width and steepness
of the main lobe, which could conceal neighboring
MPCs and the size of the side lobes, which cause
amplitude errors and may be falsely detected as MPCs.
For the measurement series in [6], a Hamming window
is well-suited since it has the smallest first side lobe
next to the main lobe of all windowing functions. As the
MPCs in [6] are close together, this results in the lowest
number of concealed MPCs and also leads to less falsely
detected MPCs near the main lobe. In return, the side
lobes of the windowing function are decreasing more
slowly compared to other available windowing functions
and the main lobe is twice as wide as the main lobe of
a rectangular window.

Additionally to the influence of the windowing func-
tion, the exact position of the main lobes center is not
known due to the discrete nature of the samples in the
input delay spread function. The application of zero
padding before calculating the IDFT determines the main
lobes’ centers more accurate. Each local maximum can
– after application of zero padding – be identified as
a MPC. The proposed signal processing is exemplarily
illustrated in Fig. 3. The complete determined PDP for a
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Fig. 3. Cutout of the impulse response at t = 0, determined from
the measurement series in [6] using a) rectangular windowing and b)
a Hamming window and zero padding, the maxima are marked by
arrows and identified as MPCs.

transmitter-receiver-distance of 20.4 m is shown in Fig.
4. The movement of a person in front of the antenna is
clearly visible. The two collapses of the first tap occur
when the person was within the direct path between the
antennas. All identified MPCs below the noise floor are
discarded for further processing.

After squaring the input delay spread function to
obtain the PDP, the SV model parameters are determined
in two steps: Firstly, each tap has to be associated with
a cluster, the process of which is known as clustering.
After that, the parameters can be estimated. Clustering
is often done by visual inspection, for example in
[7]. Obviously, this procedure is highly subjective and
therefore results in different model parameters depending
on the inspector’s assessment. Unfortunately, no ideal
algorithmic approach is available yet, either. In [8], a
clustering algorithm based on intuitive assumptions is
published. The authors propose to test different numbers
of clusters. For each possible association of taps to clus-
ters the error of a linear regression in semi-logarithmic
scale over the taps of one cluster is calculated. The
algorithm terminates when a user-defined regression-
error is reached. As a result of the small number of
input parameters, this algorithm can support the process
of visual inspection. However, since it is based on a
user defined termination, it will also provide subjective
results. For the measurement series in [6], a mean
quadratic error of 2 dBm was chosen after several test
runs following the procedure described in [8]. Since all
taps are close to each other, no cluster can be observed
only as a reason of a great time separation between two
taps. This additional criterion for clustering defined in
[8] is therefore not used here.

After clustering, the model parameters Λ and λ are es-
timated using the minimum variance unbiased estimators

Fig. 4. Time-variant impulse response, determined from the measure-
ment series in [6] with 20.4m transmitter receiver distance.

given by

Λ̂ =
N∆T∑N∆T

l=1 (∆T )
, λ̂ =

N∆τ∑N∆τ

k=1 (∆τ)
, (7)

where Λ̂ is the estimated value of the cluster arrival
rate Λ, calculated from N∆T observed cluster inter-
arrival times ∆T taken from all measured transmission
distances and time instances. The variable λ̂ denotes
the estimated value for λ, calculated by means of N∆τ

observed tap inter-arrival times ∆τ . Only similar PDPs
are used for parameter estimation. This means PDPs with
collapses in the first tap due to the movement of a person
in front of the antenna are excluded.

The estimation of the values Γ̂ and γ̂ can be conducted
by LS fitting of an exponential function to the data.
Please note that a linear LS fit of the data in logarithmic
scale is not optimal in the LS-sense and will lead to
different model parameters. The fit for Γ̂ is done by
shifting all cluster arrivals of each measurement series
untill the first arrival is at τ = 0 ns. Furthermore, all
arrivals are scaled such that the first arrival has a power
of 0 dBm. By doing so, it has to be noted that the noise is
also scaled. Therefore, weighting according to the power
of the first cluster arrival is considered in the LS fit. The
fit to obtain γ̂ is performed analogously.

All estimated parameter values are presented in Tab. I.
The smaller value of Λ compared to the original model
parameter postulated in [5] is most likely due to the
smaller hall size. Furthermore, we assume that the higher
carrier frequency is mainly responsible for the smaller
values of Γ and γ. To allow the implementation a
modeling threshold has to be defined since only a finite
number of taps can be simulated. With a threshold of
−25 dBm, which is also used for the WLAN models, and
the postulated parameters a mean root mean square delay
spread (RMSDS) of 7.6 ns is achieved. The RMSDS
is related to the coherence bandwidth and therefore
offers a measure how fast the channel changes over
frequency. This value is quite small compared to other
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channel models which seem to be suitable for industrial
environments, e.g., the WLAN channel model E. The
WLAN channel model E has a RMSDS of 100 ns. The
small RMSDS of the proposed model is most likely
due to the small dimensions of the room. Therefore, we
recommend to apply the estimated parameters to model
small factory halls only.

B. Spatial Correlation

Many models are available characterizing the spa-
tial correlation between the transmission paths of a
multi-antenna system. Commonly used is the Kronecker
model, e.g., in the WLAN channel models. For more
complex models, as the Weichselberger model for exam-
ple, no parameters for industrial environments are pub-
licly available yet. The Kronecker model is parametrized
only by the power azimuth spectrum (PAS) on transmit-
ter and receiver side, analyzed in multiple publications
and also has suitable parameters available. Therefore it
is used in this paper. The function PAS(Θ) describes
the relationship between transmitted or received signal
power depending on whether the correlation is calculated
at the transmitter or the receiver and the azimuth angle.
This model should only be used to predict the spatial
correlation for a maximum of two transmit and two
receive antennas [9]. For a higher number of antennas,
applying more complex models is recommended.

In [10] it was found that for indoor environments the
mean angle of arrival (AoA) of different clusters are uni-
formly distributed. According to the authors, the AoAs
of taps within a cluster are Laplacian distributed with the
angular spread (AS) σ as distribution parameter. For a
system like WLAN, it can be assumed that these findings
are also valid for the angle of departure, since the WLAN
access point is in a similar environment as the WLAN
station. Thus, a Laplacian-distributed PAS on transmit
and receiver side is applied in the following. Since
measurements for the AS for industrial environments to
parametrize the Laplacian PAS are not publicly available
yet, measurements in different indoor environments are
used. For a center frequency of 5.2 GHz the AoA was
σ = 16.69° and σ = 41.25° in two office buildings
[11]. The measurements were carried out for the same
center frequency in [12] in a big indoor environment,
an office, and an electrical laboratory. The authors could
investigate an AS between σ = 3.93° and σ = 9.03°.
Since high differences between the different measure-
ments can be observed, we conclude that the AS is highly
dependent on the environment and other external factors.
Regarding the channel model in this work two extreme
values for the AS are selected, see Tab. I.

C. Temporal Correlation

The variation of the channel over time is determined
by the Doppler power density spectrum Φcc. Measure-
ments of the Doppler power density spectrum in indus-

trial environments are available, e.g., in [13], but no
functional description of the spectrum is presented. Other
published measurements in industrial environments are
not available to the best of our knowledge. The WLAN
channel models, which are commonly used for WLAN
systems, use a bell shaped Doppler spectrum. This
Doppler spectrum shall mimic a static transmitter and
receiver with movement in the environment. However,
the circumstances of the measurement or underlying as-
sumptions that lead to the bell shaped Doppler spectrum
are not documented. Alternatively to measurement based
Doppler spectra, theoretical derived spectra can be used.
The most common theoretical derived Doppler spectrum
is the bathtub-shaped Jake’s spectrum. This spectrum is
based on the assumption of equally distributed AoAs
only arriving in the horizontal plane while transmitter
or receiver are moving. It is important to note that the
assumption for the AoAs if using a theoretical spectrum
has to match with previous assumptions. Using the Jake’s
spectrum blindly is a common mistake, e.g., observable
in [14]. The authors describe the use of the Jake’s
spectrum, amongst others. Simultaneously, they propose
the use of a Laplace distribution for the AoAs of different
taps to model spatial correlation. These are mutually
exclusive assumptions. Uniformly distributed AoAs of
MPCs of one tap needed to derive the Jake’s spectrum
have no mean which therefore cannot be Laplacian
distributed. Since MPCs arriving at the same time at the
receiver and differently delayed MPCs forming different
taps have the same physical cause, it is appropriate to
use the same distribution for both phenomena. Hence, we
assume a Laplace distribution with the same parameters
φ and σ as the AoA distribution of the belonging cluster
for the AoAs of MPCs of the respective tap, too.

Under these assumptions, the Doppler spectrum for a
moving transmitter or receiver with Laplace-distributed
AoAs and rays arriving only in the horizontal plane
follows as

Φcc(fd) =

1√
2σ

exp(−|
√

2
σ (cos−1(fd/fm)− φ)|)

|fm

√
1− (fd/fm)2|

+

1√
2σ

exp(−|
√

2
σ (cos−1(fd/fm) + φ)|)

|fm

√
1− (fd/fm)2|

for |fd| ≤ fm . (8)

Otherwise, for |fd| > fm, it holds that Φcc = 0. The
Doppler frequency is denoted by fd with the maxi-
mum Doppler frequency fm. The maximum Doppler
frequency fm is defined by the relative movement speed
between transmitter and receiver v, the speed of light c
and the carrier frequency fc according to fm = v

c fc. The
Doppler spectrum (8) is visualized in Fig. 5 for different
parameters of the AS σ. For very high values of σ the
used Doppler spectrum approaches the Jake’s spectrum.

The Doppler spectrum is completely defined by the
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carrier frequency fc and the relative movement speed
v. Assuming a static access point, only the movement
speed of the station has influence. We focus on the
following exemplary settings: in industrial applications,
a transceiver could be attached on the head of a robotic
arm to replace cables. A, fully extended robotic arm
can move at a speed of 360 °/s at a maximum radius
of 0.7068 m as stated in its data sheet. Such a robotic
arm achieves a maximum movement speed of roundly
4.4 m/s. Another class of moving machinery in factories
are automated guided vehicles, which are moving at
about 1 m/s. These values are summarized in Tab. I.

If transmitter and receiver are static but scatterers
in the environment move, differently shaped Doppler
spectra are obtained. In these cases Doppler spectra with
a peak around fd/fm = 0 can be observed [15].

IV. RESULTING CHANNEL MODEL

Applying the introduced industrial channel model to
analyze the upcoming WLAN standard IEEE 802.11ax,
an exemplary packet error rate (PER) simulation is
presented in this section. Under the chosen simulation
parameters, it is shown that results generated with the
proposed industrial channel model greatly differ from
available channel models for the 5 GHz ISM band, e.g.,
the WLAN channel models. Consequently, the impor-
tance of deriving adequate channel models for industrial
use cases is discussed.

The industrial channel model is simulated for the high-
est Rician K-Factor in Tab. I of 16.2 dB, as it could be
observed that the K-Factor has only a small influence in
this type of simulation. All chosen movement speeds and
AS parameters are simulated. WLAN channel models are
commonly used for simulating indoor environments. The
WLAN model variant E is stated to characterize large in-
door environments or warehouses and therefore is a suit-
able WLAN channel model for industrial environments

TABLE I
PARAMETERS OF THE CHOSEN MODEL COMPONENTS FOR AN

INDUSTRIAL INDOOR CHANNEL IN THE 5GHz ISM BAND.

model scenario parameters

pa
th

lo
ss

an
d

sh
ad

o w
in

g

LOS PL(d0) = 77.57 dB,
n = 1.25, σx = 4.32 dB

OLOS, receiver
height obstacles

PL(d0) = 81.06 dB,
n = 0.68, σx = 3.87 dB

OLOS, transmit-
ter height obsta-
cles

PL(d0) = 83.33 dB,
n = 1.35, σx = 3.16 dB

fa
di

ng
di

st
ri

bu
tio

n automated
production K = 16.2 dB

partially
automated
production

K = 14.9 dB

manual
production K = 6.5 dB

fr
eq

ue
nc

y
se

le
ct

iv
ity

small factory hall Γ = 11 ns, γ = 1.8 ns,
Λ = 17.5 ns, λ = 4.7 ns

sp
at

ia
l

co
rr

el
at

io
n environment with

high AS σ = 41°

environment with
small AS σ = 4°

te
m

po
ra

l
co

rr
el

at
io

n robotic arm v = 4.4 m/s

automatic guided
vehicle v = 1 m/s

regarding the state of art. Thus, the proposed model is
compared with the WLAN channel model variant E. As a
communications technology the IEEE 802.11ax standard
is used, which is available in Mathworks’ WLAN system
toolbox. Exemplary single user packet transmissions with
a PHY payload of 1000 bytes and 20 MHz bandwidth
with one sending antenna are simulated. The modulation
and coding sheme (MCS) is set to MCS0, corresponding
to BPSK modulation and code rate 1/2. The shortest
guard interval with 0.8 µs duration is used and convo-
lutional channel coding is applied. The longest available
channel estimation preamble field is transmitted. On
the receiver side, two antennas in combination with
maximum ratio combining is used to show the influence
of the spatial correlation model. Timing synchronization
as well as frequency synchronization is used on receiver
side as in real WLAN systems.

The PER results under use of the Monte-Carlo method
for these assumptions are presented in Fig. 6. By com-
paring the two channel models, it is clearly visible
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Fig. 6. Simulated PER of IEEE 802.11ax transmissions comparing
the proposed industrial channel model for different movements speeds
and ASs to the WLAN channel model E.

that the communications system transmitting over the
industrial channel model performs worse than over the
WLAN channel Model E for all SNR values. The smaller
coherence bandwidth of the channel has the highest
impact resulting in a smaller channel coding gain. The
higher Doppler shift ensures that the channel estimation
outdates over the length of a WLAN packet for high
movement speeds. It is shown that results generated with
the proposed industrial channel model can greatly differ
from available channel models, which intuitively may
seem adequate for performance simulation of wireless
system design intended to serve industrial use cases.
Hence, for evaluating wireless industrial applications it
is important to carefully select or derive channel mod-
els, considering the correct factory size and appropriate
movement patterns, in order to avoid misleading results.

V. CONCLUSION

In this paper, the derivation of a stochastic channel
model for transmissions in the 5 GHz ISM band in
an industrial indoor environment was presented. We
discussed mistakes and inaccuracies in the literature,
which should be avoided while creating channel models,
e.g, using incompatible model components, subjective
methods and non-optimal parameter estimators. A pro-
cedure of deriving a channel model for industrial use
cases and its parametrization was presented. Addition-
ally, parameter estimation was carried out for a small-
sized factory environment providing novel SV model
parameters for industrial wireless communications in the
5 GHz ISM band. A MATLAB implementation of the
proposed channel model will be gladly provided upon
request. Based on the shown simulations, we conclude
that it is important to utilize tailored channel models for
factory environments in order to deliver accurate results,
especially with respect to the development of URLLC
technologies for industrial applications.
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