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Abstract—A major challenge for the realization of ultra
reliable low latency communications (URLLC) systems is the
fast fading of wireless channels and the therewith associated
outages. To overcome the fading, diversity concepts, as well as
transmissions with low modulation order and low code rate are
widely considered. However, these methods have an undeniably
high resource consumption. In order to reduce it, fading predic-
tion methods can be utilized as part of the scheduling strategy.
We propose a novel outage prediction approach based on a
Wiener filter that significantly helps to increase URLLC system
monitoring and radio resource scheduling. In this paper we focus
on Rayleigh fading channels and classical Doppler spectra. The
proposed outage predictor is found to work on a wide range of
sampling times and also with only a few observed fading samples
available. During operation, future outage probabilities can be
calculated beforehand and reliability guarantees can be made.
Utilizing the proposed outage prediction method increases the
achievable reliability of a link by several orders of magnitude
compared to best effort transmissions on a single link. Links
that are operable are well identified when little movement is
present and prediction of several milliseconds is sufficient.

Index Terms—channel prediction, URLLC, radio resource
scheduling, CQI aging

I. INTRODUCTION

Development efforts towards Ultra Reliable Low Latency
Communications (URLLC) have multiplied in recent years,
due to the prospect of a whole range of new applications.
These applications are, e.g., in the field of industrial produc-
tion, where shorter product cycles, higher product individu-
alization and overall increased flexibility are expected to be
enabled [1]. The Tactile Internet relies on URLLC services as
well and is promised to revolutionize remote interactions with
the environment and even human learning [2]. Although recent
studies indicate that some closed loop controlled systems as
cooperative automated driving or the control of automated
guided vehicle (AGV) fleets do not have as strict requirements
regarding communications latency as initially assumed [3], [4],
URLLC is inevitably required for control loops with higher
dynamics. Round trip latency values of a few milliseconds are
also important for a wide variety of applications with humans
involved, e.g., teleoperating systems or virtual environments.

The ambitious Quality of Service (QoS) requirements for
URLLC are highly demanding for wireless communications
systems, since achieving such low latency values usually
requires the communications system to be able to successfully
transmit packets on the first try, implying also demands

towards high communications dependability. Especially small-
scale fading, which causes random fluctuations of the received
power, is difficult to overcome and a major source for packet
errors. Most problematic are deep fades, where the received
power is low and packet errors are highly likely. Following
these considerations, a two-state model for the fading can be
employed, categorizing the fading in outage and up state based
on a threshold value.

To be able to transmit reliably also in case of a link outage,
diversity concepts can be utilized where multiple links are
used for redundant data transmission in parallel. However,
in order to achieve an overall outage probability of 10−5

at a fading margin of F = 10 dB, at least five selection
combined, independent Rayleigh fading links are needed [5].
For lower probabilities, which are discussed for URLLC, even
more parallel links are required. This results in a massive
need for communications resources, raising the question of
scalability when many URLLC devices need to be served. To
implement resource efficient scheduling strategies we propose
an outage predictor, which is able to predict future outages
based on the previously observed fading. URLLC devices
can then be assigned to communications resources that are
predicted to be operational, reducing the resource consumption
per device while simultaneously maintaining the desired QoS.
Furthermore, the proposed outage predictor is capable of
delivering the probability of a future outage. This probability
can be used to warn upper communications layers in advance,
when it is expected that not enough resources can be provided
for URLLC services. Such predicted availability indications
are a key enabler for ultra reliable services as discussed in [6].
Based on this information, the application is able to decide
if an adaption to a worse Quality of Control (QoC) (e.g.,
slowing down) resulting from the reduced QoS is needed. The
prediction allows the application to prepare in advance, since
applying such measures usually takes some time.

Numerous small-scale fading predictors have been proposed
in the literature over the last years [7], [8]. Just recently,
also machine-learning-based fading prediction approaches [9],
[10] were investigated. Such fading predictors have been
almost exclusively analyzed in view of achievable gains in
spectral efficiency (e.g., in [11]), since the metric is suited for
quantifying communications resource savings. For successful
URLLC system design, however, the focus shifts towards
the experience of a single user, demanding for QoS-focused
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methods. Only little fading prediction research tailored to
the needs of URLLC has been carried out. The authors in
[12] investigated fading prediction methods for relay selection
in cooperative URLLC architectures. Methods for general
URLLC systems have not been presented yet.

In this work, we aim to fill this gap and extend the
Wiener-filter-based fading predictor of [7] for URLLC out-
age prediction. Additionally to the derivation of the outage
predictor, we provide an overview over the filter parameter
choice for optimal prediction performance. The predictor has
the potential, as shown in our simulation-based evaluations, to
reduce the link outage probability significantly.

II. SYSTEM MODEL

A simplified model for the communications system is
considered to understand the fundamental performance of
the outage predictor. We assume that the user equipment
(UE) is connected to the base station (BS) over a single
Rayleigh fading link with its complex channel coefficient
h(t). Furthermore, we consider additive white Gaussian noise
(AWGN) n(t). Hence, the transmit signal x(t) and the receive
signal y(t) are related by

y(t) = x(t) · h(t) + n(t) . (1)

Furthermore, we consider a constant relative movement be-
tween the UE and scatterers, resulting in a maximum Doppler
shift fm. As for this kind of investigations widely assumed
in literature, we consider numerous independent multi-path
components arriving at the receiver at the same time with
equally distributed angle of arrivals solely in the horizontal
plane. These assumptions lead to the classical Doppler spec-
trum with autocorrelation function

rhh(τ) = J0(2πfmτ) . (2)

The UE is assumed to be simultaneously transmitting P pilot
symbols for uplink channel estimation of the fading at time
t, which are in the following expressed by the vector p. The
channel estimation is then used as input for the predictor. On
the BS, a maximum likelihood (ML) estimator is considered
to obtain an estimate of the complex channel coefficients

ĥ(t) = (pHp)−1pHy . (3)

This ML channel estimator is widely used in practice since
it achieves the Cramér-Rao bound and is unbiased. Later on,
the relationship between observation (channel estimation) and
true value of the fading is of importance. Based on the ML
channel estimator and the AWGN assumption we can use

ĥ(t) = h(t) + n′(t),

Re
{
n′(t)

}
, Im

{
n′(t)

}
∼ N

(
0, σ2

n′ = σ2
n(pHp)−1

)
. (4)

Here, σn describes the variance of real and imaginary part
of a single noise sample and σ′n is the variance of white
Gaussian noise overlapping the true fading value after channel
estimation.
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Fig. 1. Outage predictor within a base station-centered architecture.

For scheduling purposes, it is assumed that uplink channel
estimations are available periodically at the BS over a large
bandwidth (e.g., via sounding reference signals). Channel
reciprocity is assumed such that by measuring the uplink
channel, the downlink channel can also be rated. Fig. 1 shows
the use of the outage predictor within the base station-centered
architecture.

In our analysis we classify the fading in two states, up and
outage. An outage is defined as the event that the fading level
falls below a specified threshold |hmin|. When the fading is
above the threshold |h(t)| > |hmin|, we define the system to be
in up state. Due to the probabilistic nature of channel coding,
falling below the threshold |hmin| does not result in a sure
packet error. Analogously, being above the threshold will also
not guarantee a successful delivery. Therefore, the boundary
line is not hard but rather blurred. In the up state packet errors
occur only occasionally without long error bursts. For these
remaining packet errors control systems could employ a robust
controller design which can overcome a certain amount of
consecutive packet errors [13]. The threshold value has to be
chosen in a way that the remaining packet error probability in
the up state, can be tolerated by the system.

III. OUTAGE PREDICTOR

To predict fading for future samples, we employ a Wiener
filter, which belongs to the class of linear minimum mean
square error (LMMSE) estimators. In the following we sum-
marize the derivation of the Wiener filter fading predictor and
the analysis of the prediction error from [7] before modifying it
for outage prediction. For a prediction horizon tp, the estimate
of the future fading

ĥ(t+ tp| t) = ϕ(t)Θ (5)

is the output of a finite impulse response (FIR) filter with
coefficients Θ . The observation vector

ϕ(t) =
[
ĥ(t) ĥ(t−∆t) ... ĥ(t− (M − 1)∆t)

]
(6)

contains M past channel estimations with a fixed time between
the observations ∆t. The filter coefficients Θ are calculated
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from the cross-covariance between fading and observations
rhϕ and the autocovariance matrix Rϕ of the observations

Θ = R−1ϕ rhϕ . (7)

Given the assumptions from (1) to (3), the missing variables
to calculate the filter coefficients Θ are found to be

[rhϕ]
j

= J0(2πfm(tp + (j − 1)∆t)) and (8)

[Rϕ]ij =

{
J0(2πfm|j − i|∆t) + 2σ2

n′ , i 6= j

J0(0) + 2σ2
n′ , i = j

. (9)

In order to utilize the predicted fading (5) for the detection
of future outages, it is crucial to understand that a threshold
different from |hmin| is required due to prediction errors. A
predicted value, especially when it is close to the threshold
|hmin|, might in the worst case indicate an up state while
the true future value of the fading is in outage. Such missed
outages are highly problematic since the scheduler and the
application might react too late. Therefore, a different thresh-
old for the predicted value |h′min| ≥ |hmin| needs to be
chosen to predict outages more reliably. Thus, the proposed
outage predictor consists of the predicted fading (5) and also a
threshold value |h′min|. A future outage is indicated when the
predicted fading ĥ(t+ tp| t) falls below the threshold |h′min|.
Concurrently, the true future fading is predicted to be in the
up state when the predicted fading ĥ(t + tp| t) is above the
threshold |h′min|.

A. Prediction error

For the given assumptions it can be shown, that the predic-
tion error

e(t) = h(t+ tp)− ĥ(t+ tp| t) (10)

follows a complex Gaussian distribution

Re
{
e(t)

}
, Im

{
e(t)

}
∼ N

(
µ, σ2

)
. (11)

This originates from both h(t) and ĥ(t+ tp| t) being complex
Gaussian distributed and therefore also their difference. Thus,
the distribution of (10) is completely characterized by its
first two moments. The bias of the prediction error e(t) is
determined according to

IE
[
Re
{
e(t)

}]
= IE

[
Im
{
e(t)

}]
= µ = 0 (12)

since a generally unbiased LMMSE estimator is employed.
For the variance of the complex prediction error

IE
[
|e(t)|2

]
= 1− rThϕR

−1
ϕ rhϕ (13)

is obtained. With the variance of the real and imaginary parts
of the prediction error

IE
[
Re
{
e(t)

}]
= IE

[
Im
{
e(t)

}]
= σ2 =

1

2
IE
[
|e(t)|2

]
(14)

being half of the variance of the complex prediction error,
since real and imaginary parts are identically distributed.

The accuracy of the outage predictor is based on the error
standard deviation σ. Its value is determined by the Wiener

filter parameters prediction length tp, history length M and the
time between observations ∆t, as well as by external factors
like receiver speed v and channel estimation signal-to-noise
ratio (SNR). The prediction horizon tp for scheduling pur-
poses is the time difference between last channel observation
and data transmission. For application warning purposes, the
prediction horizon tp needs to be chosen large enough that
enough time is left for a reaction in case of an indicated outage,
while too large prediction horizons result in a degradation of
the estimation performance. The time between observations ∆t
is analyzed in Fig. 2. Here, the performance of the predictor
against different sampling times for a fixed history length M
and a constant channel estimation SNR is shown. In Fig. 2(b) it
can be seen that very large as well as very small times between
observations ∆t are critical for the prediction performance.
Very small times ∆t for a fixed history length M result in
the observation not spanning enough of the fading. Very large
times ∆t, which are greater than the coherence time of the
channel, lead to observations which are almost uncorrelated.
An optimal time between observations can be found for each
curve, however, it is shown that any time between the optimum
time and the coherence time of the channel can achieve a
reasonable prediction performance (long plateau of σ). For
lower average channel estimation SNR as shown in Fig. 2(a),
the choice of ∆t is more important as the curves have a
well-defined minimum. In this case smaller times ∆t are
advantageous. The influence of channel estimation SNR and
history length M are shown in Fig. 3 for a constant error
standard deviation σ and a constant time between observations
∆t. To achieve a certain predictor performance σ at a certain
prediction horizon tp, a trade-off between channel estimation
SNR and history length M is possible. When not operating
at the optimal time between observations ∆t as depicted in
Fig. 3(b) an increase of the history length M only results
in small gains in terms of required channel estimation SNR.
Higher values for M are beneficial when operating close to
the optimal time between observations ∆t, which is shown in
Fig. 3(a).

B. Predicted Outage Probability

Knowing the distribution of the prediction error, a predicted
fading value can now be associated with the probability for an
outage. We denote the probability for a future outage given a
certain predicted fading value ĥ(t+tp| t) as P (future outage).
As illustrated in Fig. 4, a future outage occurs when the
prediction error e(t) lies in the complex plane within an area
A of a circle around −ĥ(t + tp| t) with radius |hmin|. This
is because the sum of predicted fading value ĥ(t+ tp| t) and
prediction error e(t) is the true value of the future fading. For
a prediction error within this circular area the true value of
the fading lies within the outage region. Since the relationship
between probability and probability density is described by an
integral, P (future outage) is determined by a double integral
over the area A according to

P (future outage) =

∫
A

fRe{e},Im{e}(x, y) dA . (15)
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Fig. 2. Influence of the time between observations ∆t on the predictor standard deviation σ, parameter of the family of curves is the normalized prediction
horizon tp · fm, dashed line is an empirical value for the coherence time [14].
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Fig. 3. Trade-off between SNR and history length M to achieve a constant prediction performance, parameter of the family of curves is the normalized
prediction horizon tp · fm.

Fig. 4. Illustration of the future outage probability integration area, the red
circle marks the integration area and has radius |hmin|.

Here fRe{e},Im{e}(x, y) is the bivariate Gaussian probability
density with mean µ and variance σ2 for both dimensions. To
the best of our knowledge no closed form solution is known
for this integral. However, it can be evaluated numerically.

The predicted outage probability (15) can also be used to

define the threshold value of the predicted fading |h′min|, if
a maximum instantaneous tolerable outage probability can be
specified. In Sec. V we will present an alternative way for the
choice of |h′min|.

IV. PERFORMANCE METRICS

An ideal predictor would be able to predict outages all
the time the future fading truly is in outage, simultaneously
indicating an up state in all other cases. Since in the presence
of noise there are no black-and-white decisions, two kinds of
errors occur.

The first error type refers to predicting an outage while
no outage is going to take place. In these cases a radio
resource scheduling algorithm utilizing the predictor rejects
the channel without reason. We quantify this problem by
means of the probability to find a channel to be predicted as up
P (predicted up). This probability indicates how often a chan-
nel is considered up by the scheduler and therefore utilized for
URLLC traffic on average. The more outages are predicted
while the fading truly is up, the lower P (predicted up) gets.

The second error type, which is more critical in the context
of this work, happens when the predictor misses an outage
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TABLE I
CHOSEN PARAMETERS FOR NUMERICAL EVALUATION.

Parameter Value

v 1 m/s

fc 3.75 GHz

channel estimation
SNR 20 dB

minimal decodable
SNR 10 dB

M 25
∆t 1 m/s

number
of repetitions up to 3.5× 1010

by indicating an up state even though the true value of the
future fading lies in outage. This type of error is also denoted
as a miss and the QoS of an URLLC system utilizing the
outage predictor is mainly determined by the probability of
this error. The compound probability for a predicted up and the
channel being truly in outage, which we use for quantification,
is denoted as P (missed outage) in the following.

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed
outage predictor. In general, the standard deviation of the
predictor σ and the relation between the channel estimation
SNR value and the minimal decodable SNR value fully define
the outage prediction performance for Rayleigh fading chan-
nels. For better understanding, the evaluation in this section is
shown for an exemplary scenario and selected numeric values.
We consider an industrial setting where an AGV is controlled
wirelessly. The assumed numerical values are conducted in
Table I. We consider the AGV to be driving with a constant
speed of v = 1 m/s, which is common for such vehicles. The
communications system is considered to be operating in the
frequency band 3.7 GHz to 3.8 GHz, which was allocated for
wireless industrial communications in Germany recently. The
utilized carrier frequency fc = 3.75 GHz is in the middle of
this frequency band. Furthermore, the radio channel estimation
is characterized by its mean SNR value of 20 dB and we
define a minimal tolerable SNR value SNRmin = 10 dB. The
predictor uses the past M = 25 samples for prediction and is
expecting samples every ∆t = 1 ms. However, as discussed
in Sec. III-A, also sampling times up to the coherence time
(for this scenario around 330 ms) can achieve a similar per-
formance for the same prediction horizons tp.

The results in this section are generated by means of
computer simulation utilizing the Monte-Carlo approach. Up
to 3.5 · 1010 noisy Rayleigh fading channel estimations ĥ(t)
are generated and used as input for the Wiener filter (5).
For multiple prediction horizons and the whole range of

possible prediction thresholds |h′min|, the up states and out-
ages of the randomly generated fading are predicted. The
predicted outages are then compared with the true state
of the fading sequence, which is determined by using the
time shifted non-noisy Rayleigh fading h(t + ttp) and the
outage threshold |hmin|. The probabilities P (predicted up)
and P (missed outage) are then empirically approximated
following the law of large numbers.

The prediction performance for the chosen parameters is
shown in Fig. 5(a). The curves represent the performance of
the predictor for different prediction horizons tp. Each line
spans different operating points, which can be adjusted by
varying the threshold for the predicted fading |h′min|. If, for
instance, a communications resource scheduler needs 1 ms
to assign or switch resources after the last training signal
is received, a prediction horizon of 1 ms would be utilized.
The target probability for a missed outage P (missed outage)
could be set to 10−3, which reduces the probability for an
outage on this link by factor 100 compared to best effort
transmissions without prediction. The average probability that
this link is considered to be in the up state and therefore
utilized is then 87 %. When a much larger prediction horizon
of 21 ms is considered the same probability for a missed
outage P (missed outage) = 10−3 can be achieved, but the
channel will in this case be predicted as up only 40 % of
the time. The curves shown here demonstrate the prediction
performance only for a single channel. In a scheduling system
multiple channels would be monitored in parallel. The question
which minimal probability for finding each of these channels
to be predicted as up becomes a scheduling problem and is
not part of this paper.

Fig. 5(b) shows an alternate way for the choice of the thresh-
old |h′min| compared to Sec. III-B. Here a target probability
for a missed outage P (missed outage) has to be given, which
is the case when an average link performance is targeted. The
previously discussed values are achieved utilizing threshold
values of |h′min| = 0.37 and |h′min| = 0.88, respectively.

VI. CONCLUSION

Fading prediction methods are capable of saving commu-
nications resources by scheduling users to resources that are
predicted to have sufficiently good link quality. Resources that
are in outage for a specific UE are not considered as candidates
for transmission, instead may be operable for another UE due
to the spatial variation of fast fading. The proposed outage
predictor extends existing fading prediction methods [7] due
to its capabilities of achieving specific prediction certainties,
making it a promising candidate for URLLC implementations.
The predictor achieves a good performance in Rayleigh fading
channels even with only a few observed fading samples avail-
able. Furthermore, the predictor is able to successfully operate
over a wide range of sampling intervals for the observations.
From our numerical evaluation we conclude that the proposed
outage predictor has the potential to reduce the probability of
an outage on a single link by orders of magnitude. Simultane-
ously, the predictor indicates an up state for channels which
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Fig. 5. Predictor performance for SNRmin = 10 dB, SNR = 20 dB, fc = 3.75 GHz, v = 1 m/s, ∆t = 1 ms, M = 25, parameter of the family of curves
is the prediction horizon tp, the red circle marks the single link performance without prediction.

are truly up reasonably well for short prediction horizons
of some milliseconds and for slowly varying channels. In
faster changing environments or when long prediction horizons
are needed, the performance decreases rapidly, requiring fall
back methods for URLLC, e.g., classical diversity methods.
It is left for future work to study how the outage prediction
performance develops under real world conditions, when the
correlation of the channel has to be estimated. Also, the
development of a scheduler that is able to exploit the additional
information gathered from the predictor is left for future work.
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