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Abstract

The addition of redundancy is a promising solution to achieve a certain Quality of Service (QoS) for
ultra-reliable low-latency communications (URLLC) in challenging fast fading scenarios. However, adding more
and more redundancy to the transmission results in severely increased radio resource consumption. Monitoring
and prediction of fast fading channels can serve as the foundation of advanced scheduling. By choosing
suitable resources for transmission, the resource consumption is reduced while maintaining the QoS. In this
article, we present outage prediction approaches for Rayleigh and Rician fading channels. Appropriate
performance metrics are introduced to show the suitability for URLLC radio resource scheduling. Outage
prediction in the Rayleigh fading case can be achieved by adding a threshold comparison to state-of-the-art
fading prediction approaches. A LOS component estimator is introduced that enables outage prediction in line
of sight (LOS) scenarios. Extensive simulations have shown that under realistic conditions, effective outage
probabilities of 10−5 can be achieved while reaching up-state prediction probabilities of more than 90 %. We
show that the predictor can be tuned to satisfy the desired trade-off between prediction reliability and
utilizability of the link. This enables our predictor to be used in future scheduling strategies, which achieve the
challenging QoS of URLLC with fewer required redundancy.
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1 Introduction
One of the main pillars of the fifth generation (5G) mo-
bile broadband standards is ultra-reliable low-latency
communications (URLLC), which aims to provide ex-
tremely high service availabilities paired with latency
values of only a few milliseconds. To realize even more
ambitious quality of service (QoS) requirements com-
pared to 5G, URLLC inevitably has to play a key role
also during research of the sixth generation (6G) mo-
bile broadband standards [1, 2].

The ongoing development of URLLC is driven by a
wide variety of applications. In recent yeas, many of
these applications were industry-focused, where wire-
less solutions allow for shorter product cycles, more
product individualization and an overall increased flex-
ibility [3]. One major challenge is wireless closed-loop
control as losing packets and the latency of the trans-
mission might lead to plant instability, which in turn
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could cause damage or even human harm. Latency-
critical mobile connectivity is also required when hu-
mans are involved in the control loop [4, 5]. In indus-
try, this is the case, e.g, in teleoperating applications or
during installation of machines, where a human could
train the machine instead of programming it. In the
future, URLLC might also find its way to consumer
products for entertainment, for health or even for hu-
man learning.

The major challenges for URLLC are the imperfec-
tions of the wireless link, especially the fast fading of
the channel. Due to reflections in the environment,
many copies of the transmit signal arrive at the re-
ceiver simultaneously and interfere which each other.
When the transmitter or the receiver moves, the chan-
nel conditions continuously change since the waves in-
terfere differently at different locations [6]. In the best
case, all signals constructively add up at the receive
antenna. In the worst case, however, all signals de-
structively cancel each other out, effectively leading to
zero receive power. Situations where the receive power
is low, so-called outages, have to be avoided for the
successful realization of URLLC.
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Different from well-established conventional ap-
proaches that cost severe resources either in hard-
ware (spatial diversity through many antennas and
signal processing chains) or at the air interface (band-
width), the basic concept of this article is to monitor
the fast fading channel and schedule users only to re-
sources that are operational. Due to the spatial vari-
ation of the channel, a resource that is in outage for
one user can have perfect channel conditions for an-
other. Therefore, this approach is expected to realize
URLLC’s ambitious QoS targets while keeping the re-
quired additional resource consumption low. This is of
utmost importance when considering the scalability of
a URLLC deployment, i.e., when many devices need
to be served simultaneously. The resource consump-
tion becomes even more important when realizing high
payload applications with latency requirements, e.g.,
cloud rendered virtual- or augmented reality.

Rapidly varying channel conditions are challenging
when monitoring fast fading channels. In a real deploy-
ment, a monitoring delay τ exists between receiving
the last channel observation, scheduling and eventu-
ally transmitting the actual payload. Consider the case
that users were scheduled based on the last channel ob-
servation. In this case, many actual outages would be
missed; i.e., the channel is monitored to be operable
at time t, but non-operable during payload transmis-
sion at t + τ . The performance for Rayleigh fading is
visualized in Fig. 1, where the effective outage proba-
bility of such a system Pr(effective outage) is plotted
against the Doppler frequency normalized monitoring
delay τfm for different fading margins F . It is clearly
visible that most of the monitoring gain disappears al-
ready for small monitoring delays. In other words, with
increasing delay the monitoring quickly becomes point-
less and the effective outage probability asymptotically
converges towards the average link outage probability.

A solution to overcome this time delay is to employ
predictive methods. Although the fast fading chan-
nel conditions change quickly, they still change con-
tinuously, which enables predictions. The main con-
tribution of this article is to describe the design and
the performance of an outage predictor. This article is
based on and extends our previous works [7, 8], where
outage predictors for Rayleigh and Rician fading were
proposed for the first time. The contributions of this
article are summarized as follows:
• Outage predictors for Rayleigh and Rician fading

channels are described.
• The Rayleigh und Rician fading outage predictors

are compared. Their differences are highlighted
and their area of application is contrasted.
• Relevant related work regarding fading prediction

is discussed.
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Figure 1 Performance of outage identification, when relying
purely on the latest channel observation

• An analysis of the predictor parameters for Ri-
cian fading is presented. The parameters define
the number and periodicity of channel observa-
tions at the input of the predictor.

• Performance metrics tailored to the use-case of ra-
dio resource scheduling for URLLC are proposed.

• Performance evaluation is conducted by means of
extensive simulation. Compared to our previous
works [7, 8], generalized results are provided.

2 Methods/Experimental
This article aims to study the performance of a novel
outage prediction scheme in Rayleigh and Rician fad-
ing channels. The predictor combines a Wiener filter
with a threshold comparison for the identification of
future outages. In the Rician fading case, additional
line-of-sight (LOS) parameter estimation is employed.
The focus during design and analysis of the prediction
scheme is set on a prospective application to URLLC
radio resource scheduling.

The performance of the outage prediction scheme is
analyzed using analytical statements and Monte-Carlo
computer simulation for a practical set of parameters.
Noisy channel coefficients are generated randomly and
fed into the predictor. The predictions are then com-
pared with the respective true future value. Evaluation
is conducted using classical binary classification anal-
ysis and application-related metrics that are proposed
in this work. The number of repetitions is individu-
ally specified during discussion. The underlying data
of this study is generated from mathematical models,
which are completely described in Sec. 4.

3 Related Work
Estimating the current state and predicting future be-
havior of wireless channels has been a research chal-
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lenge for many years. As expected, the used estimation
methods have been evolving along with the wireless
communications technologies and standards.

With the ever-growing demand of higher transmis-
sion rates without sacrificing transmission quality in
terms of bit error rate (BER), the availability of chan-
nel state information became a necessity. Adaptive
transmission techniques allow a more efficient resource
usage, e.g., by choosing the modulation scheme ac-
cording to the current fading conditions [9]. Early ap-
proaches were based on the sum-of-sinusoids (SOS)
modelling. The deterministic fading modelling is based
on the estimation of Doppler shifts, amplitudes and
phases of the overlaid sinusoids through ESPRIT- and
MUSIC-based algorithms [10, 11]. This is done un-
der the assumption that scatterers in the environment
remain constant and the process is dominated by a
few dominant scatterers. The first advances were fol-
lowed by many variants of auto-regressive (AR) ap-
proaches. These model predicted channel samples as a
weighted sum of previous samples using the minimum
mean square error (MMSE) criterion. This method re-
quires an estimate of the correlation function of the
channel samples. Promising results were obtained, e.g.
in [9], where a Wiener filter is used for the predic-
tion of in-phase and quadrature (I/Q) Rayleigh fading
channels. The predictor is tested using data generated
by ray-tracing and real data from vehicular channel
measurements. Similar investigations were performed
in [12, 13]. In these works, an unbiased power predic-
tor is additionally derived based on solely the channel
power instead of the complex channel gain. The works
[9, 14, 15] extended the predictor by the use of effi-
cient adaptive filtering techniques to update the pre-
dictor coefficients in case of varying long-term channel
conditions. Motivation for investigating fading predic-
tion techniques was exclusively the raise of spectral
efficiency.

When orthogonal frequency-division multiplexing
(OFDM) became part of the fourth generation (4G)
mobile broadband standard, channel prediction re-
search was directed towards adaptive bit allocation in
OFDM symbols, aiming again to increase the spectral
efficiency. In [16], the MMSE predictor, the Wiener
filter predictor, as well as the adaptive methods nor-
malised least mean squares (NLMS) and recursive least
squares (RLS) are derived for a single input single out-
put (SISO) OFDM system. The predictors are com-
pared in terms of their mean prediction errors. Sim-
ilarly, for SISO OFDM systems, a simplified MMSE
predictor and its extension to the adaptive least mean
squares (LMS) and RLS techniques were proposed
in [14]. Evaluations were conducted in terms of av-
erage prediction error and spectral efficiency. Similar

to OFDM, [15] also exploits channel prediction for
adaptive frequency hopping by adapting transmission
parameters to the channel conditions at the next cho-
sen frequency. Other approaches include the estima-
tion of time varying fading parameters with the help
of Kalman filter variants to enhance the prediction
performance [17]. In [18], a Kalman filter is used to
directly predict Rayleigh fading. The used state space
model is based on the SOS model. Recently, opposing
to statistical methods, machine learning approaches
have been proposed for fading channel prediction. For
example, in [19] a back propagation neural network is
used to predict I/Q channel coefficients in Rayleigh
fading. A recurrent neural-network-based approach is
used in [20] and analyzed in terms of average pre-
diction errors and bit error rates. Those data-driven
approaches do not require any modelling or parame-
terization.

In today’s 5G and future’s 6G mobile broadband
standard, very high data rates are only one of the en-
visioned features. For the realization of URLLC, more
attention needs to be directed towards the reliability
of transmissions rather than solely maximizing spec-
tral efficiency. Consequently, research on fast fading
channel prediction has to perform a paradigm shift
as well. To allow the scheduling system to achieve a
certain QoS, the predictor needs to be built around
suitable reliability measures. For URLLC, the analysis
of average prediction errors and BERs is not enough
anymore. Under the URLLC premise, only very few
investigations have been conducted. In [21, 22] coop-
erative communications schemes, where messages are
transmitted over multiple relays, are investigated for
URLLC. The authors employ fading monitoring and
prediction to choose the most suitable relays. It is
shown that the coherence time is an insufficient metric
to quantify the reliability of fading prediction methods.
This article contributes to fill this gap and provide
prediction methods and metrics for general URLLC
architectures.

4 System Model
The overall system model considered in this article is
shown in Fig. 2. It is assumed that the user equipments
(UEs) periodically transmit training signals, which are
used to acquire channel information between the base
station (BS) and the individual UE. We assume chan-
nel reciprocity such that by measuring the uplink (UL)
channel, the downlink (DL) channel can also be rated.
This is practical after a calibration phase to account
for differences in the circuits of transmitter and re-
ceiver as shown in [23]. Monitoring the uplink channel
is preferred over the downlink since thereby the neces-
sary information is directly available to the scheduler
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Figure 2 Overall system model; The outage predictor is
highlighted and topic of this article

at the BS. The channel estimations are fed into the
outage predictor, whose design and performance will
be the main topic of this article. For each monitored
carrier frequency, the predictor calculates for the next
possible UL and DL scheduling opportunity if the re-
spective link is operational or not. Based on this infor-
mation, the scheduler allocates resources to the UEs.
As usual, the scheduling decision is transmitted to the
UEs. In the following, the necessary assumptions for
the fading channel and the communications system are
explained.

4.1 Fading Channel
In this article, we first consider Rayleigh fading with
classical Doppler spectra before extending our find-
ings to the Rician fading model. Rayleigh fading can
be used to model challenging non-line-of-sight (NLOS)
conditions and is often used as a starting point for
analysis due to its beneficial mathematical properties.
In the second part of this paper, we extend our findings
to the Rician fading case by allowing for a LOS com-
ponent. By doing so the question how the presence of
a LOS component affects the prediction performance
is answered.

4.1.1 Rayleigh fading
Rayleigh fading assumes that numerous independent
multi-path components arrive at the receive antenna
simultaneously. In this case, the central limit theorem
can be applied and therefore the real and imaginary
part of the channel coefficient h(t) can be modelled as
Gaussian distributed. Thus, the channel coefficient

h(t) =
√

2σ · hNLOS(t) , (1)

follows a zero mean complex Gaussian distribution
with variance 2σ2, since we define hNLOS(t) ∼ CN (0, 1).

The variance of the complex channel coefficient 2σ2 is
then determined by the mean power of the channel
ΩNLOS according to 2σ2 = ΩNLOS.

An underlying assumption for the widely assumed
classical Doppler spectrum is that waves arrive solely
in the horizontal plane with equally distributed an-
gles of arrival. The UE is considered to move with
a constant velocity v in an otherwise static environ-
ment, which results in a maximum Doppler shift fm.
It is well-known that this leads to the classical Doppler
spectrum with its autocovariance function

rNLOS(t1, t2) = 2σ2J0

(
2πfm(t2 − t1)

)
. (2)

Thereby, J0 denotes the zeroth order Bessel function
of the first kind.

4.1.2 Rician fading
When additionally allowing for a LOS component, the
Rician fading case arises with its I/Q channel coeffi-
cient [24]

h(t) =
√

2σ · hNLOS(t) +A · hLOS(t) . (3)

The NLOS component
√

2σ ·hNLOS(t) is similar to the
Rayleigh fading case described above. The LOS com-
ponent A · hLOS(t) is modeled to be purely determin-
istic following

A ·hLOS(t) = A ·exp
(
j(2πfD,LOS(t−t0)+ϕ0)

)
. (4)

In this formula, A is the amplitude, fD,LOS is the
Doppler frequency, ϕ0 is the initial phase of the LOS
component and t0 is the reference time at which the
phase of the LOS component equals the initial phase
ϕ0.

In Rician fading the K-factor defines the ratio of
power in the LOS component ΩLOS over the power in
the NLOS component ΩNLOS

K =
ΩLOS

ΩNLOS
=

A2

2σ2
. (5)

Thus, the standard deviation of the complex NLOS
component

√
2σ and the amplitude of the LOS com-

ponent A can alternatively be expressed over the K-
factor and the average power Ω = ΩLOS +ΩNLOS using

√
2σ =

√
Ω

K + 1
, A =

√
ΩK

K + 1
. (6)

For the special case of K = 0, (1) and (3) coincide.
Thus, the more general Rician fading model also in-
cludes the Rayleigh fading case.
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Figure 3 Two state fading model

4.1.3 Two State Fading Model

Our predictor is built upon an abstract fading model
in which the fading is classified in two states up and
outage depending on the channel gain. This fading
model is depicted in Fig. 3. The respective fading
state is based on the relation of the channel gain to
a chosen threshold value |hmin|. A different form to
characterize the threshold |hmin| is the fading margin
F = |havg|2/|hmin|2, which relates the threshold |hmin|
to the average channel gain |havg|. When the chan-
nel gain is greater than the threshold |h(t)| > |hmin|
the current fading state is denoted as up. In the up-
state the signal/noise ratio (SNR) at the receiver is
high enough for an URLLC application to be work-
ing satisfactory. Packet errors are still possible in the
up-state, but the probability for an error is low and
long error bursts are rare. Analogously, an outage oc-
curs if the channel gain is below the threshold value
|h(t)| < |hmin|. In outage, the SNR is usually too low
for successful decoding, leading to high probabilities
of packet errors and long error bursts. Following these
considerations, a URLLC service is expected to work
satisfactory in the up-state and fail in the outage state.

4.2 Communications System and Channel Estimation

For the communications system we assume that the
transmission between the UE and the BS is affected
only by the fading of the wireless channel, resulting
in the complex channel coefficient h(t), and complex
white Gaussian noise (CWGN) n(t) with variance 2σ2

n.
Hence, the transmit signal x(t) and the receive signal
y(t) are related by

y(t) = x(t) · h(t) + n(t) . (7)

To acquire information about the wireless channel, a
column vector p consisting of P pilot symbols is trans-
mitted for the estimation of h(t). Thus, when taking
(7) into account, this leads to

y = p · h(t) + n . (8)

With knowledge of the sent pilot symbols at the re-
ceiver, the influence of the fading can be observed
by estimating the complex channel coefficient h(t).
For this purpose, we use the minimum variance un-
biased (MVU) channel estimator [25]

ĥ(t) = (pHp)−1pHy , (9)

which corresponds the least squares (LS) and maxi-
mum likelihood (ML) channel estimator. Inserting (8)
in (9) yields

ĥ(t) = h(t) + n′(t) . (10)

Thus, under the given assumptions the estimate ĥ(t)
is superimposed by CWGN n′ with variance 2σ2

n′ =
2σ2

n(pHp)−1. When only one pilot is used for channel
estimation, 2σ′n

2 = 2σ2
n applies. The relationship be-

tween channel estimation and noise (10) is the starting
point for the derivation of the predictor. The perfor-
mance of the predictor will be determined by the SNR
of the channel estimation, SNR = Ω

2σ′
n
2 .

5 Problem Statement
Prediction of the channel state involves so-called bi-
nary classification.Usually, the results of the classifica-
tion problem are simply called positive and negative.
Since the outage predictor aims at predicting outages,
this article defines the up-state prediction as the neg-
ative and the outage prediction as the positive classi-
fication result. In binary classification, four potential
outcomes exist. Apart from true positive and true neg-
ative (correct classification), also the two error types
false positive and false negative prevail. In the context
of outage prediction these four outcomes represent the
following:
• true positive – detection of a future outage
• true negative – detection that an outage will not

occur
• false positive – miss that an outage will not occur
• false negative – miss of a future outage
The evaluation of such binary classification problems

is well known and various metrics for different applica-
tions are available. Three important metrics are sum-
marized from [26], where a good overview is given. An
intuitive metric for evaluation of a classifier is its ac-
curacy, which is defined as

accuracy =
TP + TN

TP + FP + TN + FN
. (11)

In this formula TP is the number of true positives and
TN is the number of true negatives. Similarly, FP is
the number of false positives and FN is the number of
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false negatives. An accuracy of 0.8 means that 20 % of
the prediction results are wrong. However, by investi-
gating the accuracy metric alone it is impossible to say
if these errors are false positives or false negatives. The
metric is of limited benefit for URLLC outage predic-
tion since the error types have a different impact on the
reliability of the wireless link. In the context of QoS-
focused URLLC, false negative classifications have a
much higher impact than false positives as they can be
a cause for transmission errors which ultimately lowers
the reliability of the wireless communications system.
This emphasizes the importance of choosing the right
metric. Investigating the individual probabilities for
correct or wrong classification allows for more explicit
statements. Two common metrics to fully describe the
classifier are the probability of false alarm (also known
as the false positive rate)

Pr(false alarm) =
FP

TN + FP
(12)

and the probabability of detection (also known as the
true positive rate)

Pr(detection) =
TP

FN + TP
. (13)

The above metrics are well suited to investigate bi-
nary test results. However, they do not provide in-
tuitive interpretation in the context of URLLC radio
resource scheduling. For example, in the case of very
high Rician K-factors even Pr(detection) = 0 (all out-
ages are missed) could be acceptable as outages are
already very rare. Therefore, Pr(detection) has only
little qualitative meaning if the predictor performs well
enough for scheduling purposes. Here, we propose two
new metrics: the compound probability for an up-state
prediction, but the channel being truly in outage

Pr(effective outage) =
FN

TP + FP + TN + FN
(14)

and the average probability to have an up-state pre-
diction on the monitored link

Pr(predicted up) =
FN + TN

TP + FP + TN + FN
. (15)

First, Pr(effective outage) covers the risk of fatal fail-
ures due to prediction errors. Thus, this metric en-
ables statements about the reliability of the system.
For example, Pr(effective outage) = 10−3 indicates
that on average 1 in 1000 predictions will result in
an outage. Here, we assume that a (perfect) sched-
uler can prevent any predicted outage, since the de-
sign of the scheduler is beyond the scope of this ar-
ticle. Second, Pr(predicted up) is defined in a way

Comparison with
Threshold |h′min|

Outage Prediction

Channel Estimation

I/Q Prediction

Outage Probability

Prediction Error
Analysis

Future

Figure 4 Structure of the outage predictor for Rayleigh fading

to assess the utilizability of the resource, i.e., how
often the observed link can be used for URLLC
traffic of a specific UE. The more false alarms oc-
cur, the lower Pr(predicted up) gets. For example,
Pr(predicted up) = 0.8 indicates that the observed
link can be considered for URLLC traffic in 80 % of
the time, whereas in the remaining 20 % the link will
not be assigned to that particular UE for transmission.

The ultimate goal for the predictor is to maximize
Pr(predicted up) and minimize Pr(effective outage)
given a certain prediction horizon tp.

6 Outage Prediction
In the following, we describe the structure of the out-
age predictor. We first address the Rayleigh fading case
and pursue to the more complex Rician fading after-
wards.

6.1 Rayleigh Fading Prediction

The outage predictor for the Rayleigh fading case is
shown in Fig. 4 and its structure is briefly explained
here before providing mathematical details.

The starting point for outage prediction is a history
of channel estimations which is collected at the input
of the outage predictor. Afterwards, I/Q channel coef-
ficients need to be predicted from the available channel
estimations by an appropriate prediction technique.
In order to obtain a binary prediction for the chan-
nel state (up or outage), the predicted I/Q channel
coefficient is compared with a threshold |h′min|. Sub-
sequently, an outage prediction is available which can
be used, e.g., for scheduling purposes. For the Rayleigh
fading case, the exact distribution of the I/Q predic-
tion error is known at the Wiener filter output. Thus,
additionally to the outage prediction also the probabil-
ity for a future outage can be calculated for future time
instants. In the next sections a detailed description of
each block in Fig. 4 is provided.
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6.1.1 I/Q Prediction

Based on the history of channel estimations, predic-
tions of I/Q channel coefficients need to be calcu-
lated. For this purpose, a well investigated Wiener-
filter-based approach is employed [9, 12]. It was shown
that the Wiener filter has a promising performance
not only under the Rayleigh fading assumption, but
also for real fading channels where empirical covari-
ances need to be utilized. In contrast to machine learn-
ing based approaches, analytical statements about the
prediction error can be derived, which allows calcu-
lation of future outage probabilities in the Rayleigh
fading case. For these reasons, the Wiener filter was
preferred over other available fading prediction tech-
niques. Nevertheless, if only the outage prediction is of
interest, other I/Q prediction techniques can be eas-
ily incorporated into the proposed framework as well
and replace the Wiener filter. The key statements to
implement the Wiener filter for the Rayleigh case are
summarized from [12].

For a prediction horizon tp, the prediction of the I/Q
channel coefficient

ĥ(t+ tp| t) = ϕθ (16)

is the output of a finite impulse response (FIR) filter
with coefficients θ. The observation vector

ϕ =
[
ĥ(t) ĥ(t−∆t) ... ĥ(t− (M −1)∆t)

]
(17)

contains M past channel estimations with a fixed time
between the observations ∆t. The filter coefficients

θ = R−1
NLOSrNLOS (18)

are calculated from the cross-covariance between chan-
nel coefficient and observations rNLOS and the autoco-
variance matrix RNLOS of the observations according
to

[rNLOS]
j

= 2σ2J0

(
2πfm(tp + (j − 1)∆t)

)
,

(19)

[RNLOS]
ij

=

{
2σ2J0(2πfm|j − i|∆t), i 6= j
2σ2 + 2σ2

n′ , i = j
.

(20)

To design the Wiener filter, knowledge about the
variance 2σ2, the maximum Doppler frequency fm and
the noise variance 2σ2

n′ is needed. However, knowledge
of these parameters is only required in a model-based
analysis, which we concentrate on in this article, and

Figure 5 Outage prediction concept; A threshold for the
prediction |h′

min| different from the outage threshold |hmin| is
introduced to tune the prediction uncertainty

not in measured fading channels, since the autocovari-
ance is directly estimated in this case anyway. There-
fore, we do not introduce estimators for these parame-
ters and instead assume that they are known through-
out the article. Using the outage predictor for mea-
sured fading channels is beyond the scope of this arti-
cle and instead left for future work.

6.1.2 Comparison with Threshold
Since we are interested if an up-state or an outage will
occur, the predicted I/Q channel coefficient is com-
pared with the threshold |h′min|. Our idea is to choose
a different threshold value for the predicted channel co-
efficient |h′min| and not the threshold in the two state
fading model |hmin|. This idea is depicted in Fig. 5.

By using the threshold |h′min| for the prediction, we
are able to adjust the trade-off between the effective
outage probability and the probability for an up-state
prediction as discussed in Sec. 5. The objective is to get
a more conservative predictor, such that falsely pre-
dicted up-states are rare, which allows the predictor
to be used for URLLC scheduling. In return, falsely
predicted outages occur more frequently, which the
scheduler has to deal with. Numerical evaluation of
this trade-off is presented in Sec. 7.3.

6.1.3 Prediction Error Analysis
For the given assumptions in Sec. 4 it can be shown
that the prediction error

e(t) = h(t+ tp)− ĥ(t+ tp| t) (21)
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Figure 6 Illustration of the integration area to calculate the
future outage probability; The red circle marks the integration
area and has radius |hmin|

follows a zero mean complex Gaussian distribution

e(t) ∼ CN
(
0, 2σ2

e

)
. (22)

This originates from the fact that both h(t) and

ĥ(t+tp| t) are zero mean complex Gaussian distributed
and therefore also their difference follows a zero mean
complex Gaussian distribution. Similarly, the filter-
ing operation in (16) does not change the distribu-
tion type, as scaled and summed zero mean complex
Gaussian random variables are again zero mean com-
plex Gaussian. Thus, the distribution of (22) is com-
pletely parameterized by the variance of the prediction
error [12]

2σ2
e = IE

[
|e(t)|2

]
= 1−rT

NLOSR
−1
NLOSrNLOS . (23)

Knowing the distribution of the prediction error,
a predicted channel coefficient value can now be
associated with the probability of outage. We de-
note the probability for a future outage given a
certain predicted channel coefficient ĥ(t + tp| t) as
Pr(future outage). As illustrated in Fig. 6, a future
outage occurs when the prediction error e(t) lies in
the complex plane within an area S of a circle around
−ĥ(t + tp| t) with radius |hmin|. This is because the

sum of predicted channel coefficient ĥ(t + tp| t) and
prediction error e(t) is the true value of the future
fading (rearranged version of (21)). Consequently, for
a prediction error within the area S the true chan-
nel coefficient lies within the outage region. Therefore,
Pr(future outage) is determined by a double integral
over the area S according to

Pr(future outage) =

∫
S

fe(t)(x, y) dS . (24)

LOS Component

I/Q Prediction

Subtraction of the

Addition of the
LOS Component

Comparison with
Threshold |h′min|

Outage Prediction

Channel Estimation

Parameter
Estimation

Â, f̂D,LOS, ϕ̂0

Â, f̂D,LOS, ϕ̂0

Figure 7 Structure of the outage predictor for Rician fading

Here fe(t)(x, y) is the zero mean bivariate Gaussian
probability density with variance σ2

e for both dimen-
sions I and Q. As there is no closed-form solution avail-
able for this integral, it must be evaluated numerically.

6.2 Rician Fading Prediction
We now extend the outage predictor for the more gen-
eral Rician fading, where not only NLOS fading, but
also a LOS component is present. The structure of the
outage predictor for the Rician fading case is presented
in Fig. 7.

Rician fading has a non-zero I/Q mean generated
by the LOS-component, which is incompatible with a
Wiener filter prediction. Therefore, the strategy when
dealing with non-zero mean processes is to subtract
the mean before filtering and adding the mean back
again at the Wiener filter output [27]. As the time
varying LOS-component can hardly be assumed to be
known, the outage predictor in the Rician fading case
has to employ estimators for the LOS parameters A,
fD,LOS and ϕ0 as first step. The estimated LOS pa-
rameters lead to the full description of the LOS com-
ponent at time t. After subtracting it from the history
of channel estimations, the filter coefficients are cal-
culated and the NLOS component can be predicted
equal to the Rayleigh fading case. In parallel, the LOS
parameters are used to calculate a prediction of the
LOS component at time t + tp which can then be
added to the Wiener filter output. This leads to a pre-
dicted I/Q channel sample, which can be thresholded
against |h′min| to obtain an outage prediction. All steps
from the LOS parameter estimation to the comparison
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with the threshold, are repeated when a new prediction
needs to be calculated.

When comparing the outage predictor in Fig. 7 with
Fig. 4, it can be seen that for Rician fading no outage
probability is calculated. This is due to the fact, that
it is not possible to analytically calculate the error dis-
tribution of the introduced LOS parameter estimation.
The result is that also the distribution of the prediction
error is unknown and outage probabilities cannot be
calculated. The same problem arises when measured
fading is predicted and the assumptions about the dis-
tributions do not hold anymore. In the rest of this
section, we explain the individual predictor elements
shown in Fig. 7 in detail.

6.2.1 Parameter Estimation

Different from the Rayleigh fading case, a time vary-
ing LOS component is present and the parameters A,
fD,NLOS, ϕ0 need to be estimated from a history of
channel estimations.

When considering (10) as an estimation problem,
where 2σ2, A and fD,LOS are the unknown parameters,
both the CWGN n′(t) and the random NLOS compo-
nent

√
2σ·hNLOS(t) act as noise. We neglect the tempo-

ral correlation of the NLOS component
√

2σ ·hNLOS(t)
for parameter estimation, since the complexity of the
derivation is lower and the resulting estimators still
perform very well in our outage prediction use-case.
With both the CWGN and the NLOS component be-
ing complex Gaussian distributed the sum is complex
Gaussian, too, and can be combined into a single vari-
able.

This leads to the standard problem of estimating the
parameters of a complex sinusoid in CWGN, which can
be tackled using a ML estimation approach as shown
in [25]. For the special case of noiseless Rician fading
the desired ML estimators were derived in [28]. In the
following, we adapt the estimators from [28] and em-
ploy an optimization to the frequency estimation.

A ML estimation of the frequency

f̂D,LOS = −arg max

(∣∣ϕ′eT ∣∣2
eeH

)
(25)

is found by maximizing the periodogram with respect
to fD,LOS. Since the periodogram is the square of a dis-
crete Fourier transform (DFT), a practical implemen-
tation would utilize the fast Fourier transform (FFT)
algorithm. The observation vector of the LOS estima-
tion

ϕ′ =
[
ĥ(t− (N −1)∆t) ... ĥ(t−∆t) ĥ(t)

]
(26)

consists of N values and is sampled at a discrete sam-
pling period ∆t. Furthermore, a vector of exponential
terms

e =
[

exp
(
−j(2πfD,LOS(N − 1)∆t) ...

exp
(
−j(2πfD,LOS∆t)

)
1
)]

(27)

is part of the estimator. Since the true value of the LOS
Doppler frequency fD,LOS could be located between
the bins of the periodogram, the frequency estimation
can be greatly improved by interpolation as shown in
[29]. The authors propose an iterative approach, which
we also employ in this article to refine the frequency
estimate (25). As suggested by the authors, we also
use two iterations.

The ML estimates for the remaining parameters can
then be calculated by inserting the frequency estimate
in (27) (we denote this vector as ê in the following)
and using

Â =

∣∣∣∣∣ϕ′ êHêêH

∣∣∣∣∣ , (28)

ϕ̂0 = arg

{
ϕ′ êH

êêH

}
. (29)

The estimator (29) yields a phase estimate of the last
element in (26), which is preferable from a prediction
point of view. Combining the estimates fD,LOS, Â and
ϕ̂0 gives an estimate of the LOS component

Â·ĥLOS(t) = Â·exp
(
j(2πf̂D,LOS(t−t0)+ϕ̂0)

)
. (30)

6.2.2 I/Q Prediction and Comparison with Threshold
With the available parameter estimations, a prediction
of the I/Q channel coefficients in the Rician fading case
can be performed. Since we are again using a Wiener
Filter which relies on the input to be zero mean, a
prediction of future I/Q channel samples

ĥ(t+ tp| t) =
(
ϕ− Â · ĥLOS

)
θ+ Â · ĥLOS(t+ tp) (31)

consists of the estimated LOS component at prediction
time Â · ĥLOS(t + tp) added to the FIR filter output(
ϕ − Â · ĥLOS

)
θ, with the observation vector of the

Wiener filter ϕ being adjusted for the estimate of the
LOS component vector

Â · ĥLOS = Â ·
[
ĥLOS(t0) ĥLOS(t0 −∆t)

... ĥLOS(t0 − (M − 1)∆t)
]

(32)

at the input of the filter. Since after subtraction of the
LOS component only the NLOS fading remains, the
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Table 1 Values for numerical evaluation

Parameter Value
Rician K factor 0, 5, 10
mean channel estimation SNR 20 dB, 10 dB
fading margin F 10 dB

filter coefficient can be calculated in the same way as
in the Rayleigh fading case, shown in Sec. 6.1.1. Also,
the comparison with the threshold is no different from
the Rayleigh fading case in Sec. 6.1.2.

7 Results and Discussion
In this section, the performance of the outage predictor
for the Rayleigh and the Rician fading case is analyzed
numerically. The scenario and the chosen parameters
for numerical evaluation is described in Sec. 7.1. After
investigating the influence of the predictor parameters
in Sec. 7.2, the performance evaluation of the outage
prediction schemes is conducted in Sec. 7.3.

7.1 Scenarios
The numerical evaluation is conducted for selected
numerical values. In the following, three different K-
factors are investigated to reflect the case of a strong
LOS component (K = 10), a medium LOS component
(K = 5) and no LOS component (K = 0, Rayleigh fad-
ing case). The performance is shown for two different
mean channel estimation SNRs of 20 dB and 10 dB. In
both cases, the fading margin is set to F = 10 dB. All
plots in the following sections are generalized by using
times that are normalized to the maximum Doppler
frequency fm. This allows the results to be used for
evaluation of various applications without the need of
re-simulation. To put the provided normalized plots
into perspective, the example of a remote-controlled
automated guided vehicle (AGV) in an industrial cam-
pus network is considered. For this use-case we assume
a constant relative velocity v = 0.8 m/s and a carrier
frequency fc = 3.75 GHz. According to fm = fc·v

c ,
where c is the speed of light, this yields a maximum
Doppler shift of 10 Hz. In the Rician fading case, the
LOS Doppler frequency fD,LOS and the starting phase
of the LOS component ϕ0 were varied randomly.

7.2 Parameter Analysis
Before being able to investigate the performance of
the outage prediction schemes, the predictor requires
parameterization. The Wiener filter is parameterized
by its history length M and its sampling period ∆t.
Furthermore, the history length N of the LOS estima-
tor needs to be specified. In the following, an analy-
sis of these parameters is conducted for the scenario
described in Sec. 7.1 to obtain a satisfactory con-
figuration for the following performance evaluation.

Throughout the whole section, the normalized predic-
tion horizon tpfm is arbitrary set to 0.1. The results of
this section were generated by means of computer sim-
ulation according to the Monte-Carlo approach. For
each point 4×105 predicted fading samples were com-
pared with the respective ideal future fading value.

7.2.1 Sampling Period
In Fig. 8, the mean squared error (MSE) of the I/Q
prediction is plotted against the normalized sampling
period ∆tfm for a fixed history length of the Wiener
filter and the LOS estimator. Although the MSE is
not suitable to describe the outage prediction perfor-
mance directly, it can be used as a performance in-
dicator. Generally speaking, the higher the error of
the I/Q prediction, the worse the outage prediction
performance after comparing the predicted I/Q chan-
nel coefficient with the threshold |h′min|. When look-
ing at the curves in Fig. 8, it can be seen that very
small as well as very large sampling periods do not
perform well for the investigated SNRs and K factors.
For a fixed history length, very small sampling periods
∆t result in the observation not spanning enough to
capture the continuous variation of the fading. Simi-
larly, very large sampling periods ∆t, which are greater
than the coherence time, lead to uncorrelated observa-
tions. According to the popular rule of thumb from
[6], the coherence time tcoh can be approximated as
tcoh = 0.423

fm
, which is close to the point in Fig. 8 where

the MSE begins to rise steeply. In all cases, a long
plateau of the MSE can be observed, where a wide
range of sampling periods ∆t perform almost equally
well. In case of a small SNR of 10 dB and especially for
Rayleigh fading (K = 0), a clear optimum for the sam-
pling period arises. For practical systems, a sampling
period between this optimum and the coherence time
could be chosen. The choice of the sampling period is
a trade off: For scheduling purposes, large sampling
periods unavoidably lead to large prediction horizons,
which generally lead to worse prediction performance
than short-term predictions. On the other hand, small
sampling periods imply that training signals need to
be sent more frequently. This, however, has a nega-
tive impact on the efficiency of the communications
system and the number of users which can be allo-
cated to send these training signals. For numerical
evaluation, we settled on a normalized sampling pe-
riod of ∆tfm = 0.05. This equals a sampling period of
∆t = 5 ms in the AGV use case described in Sec. 7.1.

7.2.2 Wiener Filter History Length
In Fig. 9, the Wiener filter history length M is in-
vestigated. Throughout all curves, an increase of the
history length M results in a reduction of the MSE.
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Figure 8 Influence of the sampling period ∆t on the MSE of
the prediction for F = 10 dB, M = 25, N = 128 and
tpfm = 0.1

This is intuitive as adding more information to the
estimation will not lead to degradation. However, the
performance gain lowers with increasing M , which is
also intuitive as recent samples carry more information
about the future channel state compared to outdated
samples. However, in the case of a very low K factor
of K = 0, high values of M still improve the perfor-
mance. For higher K factors, as the LOS component
dominates the NLOS component, the curves become
more flat even for small Wiener filter history lengths
M . Since the Wiener filter is responsible for the NLOS
prediction, the choice of M becomes less relevant for
these high K factors. Throughout our numerical eval-
uation, we settle for a Wiener filter history length of
M = 25.

7.2.3 LOS Estimation History Length
Finally, in Fig. 10 the MSE is plotted for different his-
tory lengths of the LOS estimator N . Similar to the
history length of the Wiener filter M , high values of
N are beneficial for the performance of the predictor.
Again, the steepness of the curves decreases with rising
N , thus, after a certain value the increase of N does
not lead to a significant performance increase anymore.
Due to complexity minimization, N should be kept as
low as possible as the calculation of the FFT is re-
quired in (25). For numerical evaluation of the Rician
fading case, we settled on N = 128.

7.3 Numerical Evaluation
With the scenario from Sec. 7.1 and the predictor pa-
rameters from Sec. 7.2, the prediction schemes can be
evaluated numerically. In the following, we conduct
the evaluation for the Rayleigh fading outage predic-
tor and the Rician fading outage predictor separately
as they have different feature sets.
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0.15

0.2

Figure 9 Influence of the Wiener filter history length M on
the MSE of the prediction for F = 10 dB, ∆tfm = 0.05 and
N = 128
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Figure 10 Influence of the LOS estimation history length N
on the MSE of the prediction for F = 10 dB, ∆tfm = 0.05
and M = 25

7.3.1 Rayleigh Fading Prediction
We first investigate the performance of the outage

prediction, which is one of the two predicto outputs.
The shown values originate from Monte-Carlo simu-
lations. In our simulations, 2 · 108 I/Q channel co-
efficients were fed into the outage predictor for each
prediction horizon and compared with the true future
fading state. To put this into perspective, at a sam-
pling period of 5 ms, which is used in the AGV sce-
nario, this equals 10.6 days of consecutive fading. Two
examples for classical metrics to investigate our bi-
nary classification problem were introduced in Sec. 5
and are plotted in Fig. 11 for different prediction hori-
zons. In Fig. 11(a) the accuracy of the outage predic-
tor is plotted against different threshold values for the
prediction h′min. One can see that an optimal accu-
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Figure 11 Analysis of the outage prediction performance using common binary classification metrics for 20 dB SNR, F = 10 dB,
∆tfm = 0.05 and M = 25
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Figure 12 Analysis of the outage prediction performance for 20 dB SNR, F = 10 dB, ∆tfm = 0.05 and M = 25
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Figure 13 Validation of the prediction error distribution

racy arises for small prediction horizons tp when the
threshold for prediction h′min is chosen near the actual
outage threshold hmin. This might appear appealing
for the choice of h′min, however, the optimum and the
metric as a whole have only little practical relevance
for the outage predictor. The metric combines both
error types (false positives and false negatives) within
a single number. However, false positives are consid-
erably more critical for an URLLC scheduler as they
are the defining parameter for the QoS. Even worse,
as we tune the outage predictor to be more conser-
vative by increasing h′min, the number of false posi-
tives is orders of magnitude smaller than the number
of false negatives. Therefore, the accuracy of the pre-
dictor almost only reflects false negatives, which is the
dominating error type in this case. A more informa-
tive performance evaluation of the predictor can be
done by studying a ROC, which is shown in Fig. 11(b).
In this performance figure the probability of detection
Pr(detection) is plotted against the probability for a
false alarm Pr(false alarm). The threshold value for
the prediction |h′min| now shifts the operating point
in the ROC. We can learn from the ROC curve that,
when increasing |h′min| we get a more conservative pre-
dictor so that outages are more likely to be detected
at the cost of more false alarms. However, we are still
not able to make qualitative statements about the ex-
pected scheduling performance since we are not able
to evaluate which combination of Pr(detection) and
Pr(false alarm) is acceptable in the context of URLLC
radio resource scheduling.

Therefore, following our discussion in Sec. 5, we use
Pr(effective outage) instead of Pr(false alarm). This
metric shows the effective outage probability of a per-
fect scheduler and thus can be used to qualitatively
evaluate the risk of fatal failures due to prediction er-
rors. Instead of Pr(detection) we use Pr(predicted up)

to evaluate the percentage of time the observed link
can be utilized for URLLC traffic of a specific UE. The
performance curves with these metrics are plotted in
Fig. 12. Similar to the ROC, each line spans differ-
ent operating points, which can be adjusted by vary-
ing the threshold |h′min|. A prominent point in these
curves is |h′min| = 0, where the channel is predicted as
up 100 % of the time and the effective outage proba-
bility equals the average outage probability. The av-
erage outage probability for Rayleigh fading can be
calculated using Pr(outage) = 1− exp(−1/F ) [30]. In
Fig. 12(a) the results for a mean channel estimation
SNR of 20 dB are shown and discussed using the AGV
scenario with fm = 10 Hz. If, for instance, a prediction
horizon of tp = 5 ms is needed to overcome the delay
τ between monitoring and payload and an effective
outage probability Pr(effective outage) = 10−3 is tar-
geted, the link can be used approximately 82 % of the
time for URLLC traffic. If a higher prediction horizon
of tp = 10 ms is required and the same effective outage
probability of Pr(effective outage) = 10−3 is targeted,
the link can only be utilized approximately 76 % of the
time. In Fig. 12(b), a lower mean channel estimation
SNR of 10 dB is shown. The lower SNR leads to a worse
overall performance, e.g., when using our previous ex-
ample with tp = 5 ms and Pr(effective outage) = 10−3,
the probability of having a predicted up link is only
62 % instead of 82 %. An increase of the maximum
Doppler frequency, resulting for example from a higher
carrier frequency fc or an increasing movement speed
v, will reduce the achievable prediction horizon tp for
a set of Pr(effective outage) and Pr(predicted up). As
a result it can be concluded, that the proposed pre-
diction approach is unsuitable for realizing URLLC
services in future mmWave and Terahertz communi-
cations systems.

Additional to the prediction of outages, the Rayleigh
fading outage predictor is able to calculate future out-
age probabilities under the assumptions discussed in
Sec. 6.1. Basis for the calculation is (22), which states
that the real and imaginary parts of the prediction er-
ror follow a zero mean Gaussian distribution. The vari-
ance of the zero mean Gaussian distribution was cal-
culated in (23). These findings are validated in Fig. 13,
where an empirical estimate (a normalized histogram)
of the probability density is compared with the analyt-
ical calculation for different prediction horizons. One
can see that the empirical histograms fit very well be-
neath the calculated probability densities.

With the known error distribution, the probability
for a future outage can be calculated over the dou-
ble integral (24). An analysis of this integral reveals
that the probability for a future outage only depends
on the amplitude of the predicted fading |ĥ(t+ tp|t)|.
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Figure 14 Future outage probability depending from the
prediction amplitude for 20 dB SNR, F = 10 dB,
∆tfm = 0.05 and M = 25

The resulting future outage probabilities are plotted
in Fig. 14. Using the AGV scenario with fm = 10 Hz,
if a channel coefficient with an absolute value of 0.6
is predicted at a prediction horizon of tp = 5 ms, the
channel state would be in the outage region with a
probability of 10−4. If, instead, the distance of the pre-
dicted value from the origin is 0.7, the probability is
2 × 10−7 and therefore approximately three orders of
magnitude smaller. For higher prediction horizons tp,
the predicted channel coefficient has to be farther away
from the origin to achieve the same outage probabil-
ities. This is due to the fact that the variance of the
error distribution is higher.

7.3.2 Rician Fading Prediction
The performance curves of the outage predictor de-
scribed in Sec. 6.2 for the more general Rician fading
case are shown as solid lines in Fig. 15 for a SNR of
20 dB and in Fig. 16 for a SNR of 10 dB. Each line is
based on 2×108 predicted I/Q channel coefficients. To
investigate the influence of the LOS estimation, which
is the novel component compared to the Rayleigh fad-
ing case, we also show the case of ideal LOS parameter
estimation as dashed lines, where ideal estimates are
used for subtraction and prediction of the LOS com-
ponent and only the NLOS fading is realistically pre-
dicted using the Wiener filter. Therefore, the dashed
lines for K = 0 correspond to the performance curves
discussed in Fig. 12. The performance loss which can
be observed between solid and dashed lines originates
from the imperfections of the introduced LOS estima-
tor. Overall, the performance loss is the smallest when
tp is small and the SNR is high. For large prediction
horizons and a small SNR the performance loss is more

pronounced, however, the curves are still close to their
ideal counterparts.

When comparing the same prediction horizons for
different K factors, one can observe that the out-
age predictor performs better at high K factors. For
example, when in the AGV scenario a prediction
horizon tp = 10 ms is utilized in case of K = 0
and the effective outage target probability is set to
Pr(effective outage) = 10−5, the observed link is only
predicted as up with a 61 % probability. However, for
K = 5 the same prediction horizon and effective prob-
ability is achieved while the channel is predicted as
up with a much higher probability of 92 % and for
K = 10 even 99 % is reached. A reason for that is the
decrease of randomness in the fading for increasing
K factors. The randomness originates from the NLOS
component, whose impact is reduced when a strong
LOS component is present. Ultimately, the determin-
istic LOS component is easier to predict resulting in a
better outage prediction performance.

In Fig. 16, an overall worse performance can be ob-
served compared to Fig. 15 due to the lower SNR.
While high K factors of K = {5, 10} still show a
promising performance, for K = 0 a small prediction
horizon of 5 ms achieves Pr(effective outage) = 10−5

only with a predicted up probability of 26 %. To allevi-
ate this behaviour to some extent, the number of pilot
symbols P can be increased, though leads to a reduced
spectral efficiency. However, analyzing this trade-off is
out of scope of this article and will be left for future
work.

8 Conclusion
In view of reducing radio resource consumption for
ultra-reliable wireless communication links, monitor-
ing the fast fading channel and taking measures based
on the predicted fading state is a promising strategy.
This article provided outage prediction schemes for
Rayleigh and Rician fading and introduced suitable
metrics that describe their performance.

For the Rayleigh fading case and especially for small
prediction horizons, the presented predictor features
a low missed outage probability while simultaneously
not rigorously denying the current channel. For the Ri-
cian fading case, i.e., with a LOS component present, a
LOS estimator is utilized. Compared to the case where
the LOS component is known, the LOS estimator only
degrades prediction performance minorly. Generally in
the presence of a LOS component, the outage predic-
tion performance is improved to the Rayleigh fading
case. Evidently, the LOS estimation comes at the cost
of increased complexity, mainly due to the calculation
of the FFT as part of the LOS Doppler estimation.
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Figure 15 Analysis of the outage prediction performance for 20 dB SNR, F = 10 dB, ∆tfm = 0.05, M = 25 and N = 128
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Figure 16 Analysis of the outage prediction performance for 10 dB SNR, F = 10 dB, ∆tfm = 0.05, M = 25 and N = 128

The results showed that under realistic conditions,

gaining multiple orders of magnitude in transmission

reliability is well within the scope of this channel pre-

diction concept.

Further studies need to investigate the outage predic-

tion performance under real world conditions to iden-

tify possible issues that are not covered by the Rayleigh

and Rician fading models. To handle general fading

assumptions in changing environments empirical co-

variance matrices and adaptive filtering algorithms to

efficiently update the filter coefficients may be used.

Ultimately, a scheduler needs to be developed that in-

corporates the channel prediction outcomes for every

UE to an effective and highly reliable channel alloca-

tion.

Abbreviations

3GPP: 3rd Generation Partnership Project; 4G: Fourth generation; 5G:

Fifth generation; 6G: Sixth generation; AGV: Automated guided vehicle;

AR: Auto-regressive; BER: bit error rate; BS: Base station; CWGN:

Complex white Gaussian noise; DFT: Discrete Fourier transform; DL:

Downlink; FFT: Fast Fourier Transform; FIR: Finite impulse response; I/Q:

In-phase and quadrature; LMMSE: Linear minimum mean square error;

LMS: Least mean squares; LOS: Line-of-sight; LS: Least squares; ML:

Maximum likelihood; MMSE: Minimum mean square error; MSE: Mean

squared error; MVU: Minimum variance unbiased; NLMS: Normalised least

mean squares; NLOS: Non-line-of-sight; OFDM: Orthogonal

frequency-division multiplexing; QoS: Quality of service; RLS: Recursive

least squares; ROC: Receiver operating characteristic; SISO: Single input

single output; SNR: Signal/noise ratio; SOS: Sum-of-sinusoids; UE: User

equipment; UL: Uplink; URLLC: Ultra reliable low latency communications

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

This is a post-peer-review, pre-copyedit version of an article published in EURASIP Journal on Wireless Communications and Networking. The final authenticated version is available online at: 
http://doi.org/10.1186/s13638-021-01964-w



Traßl et al. Page 16 of 16

Funding

This work was in part funded by the German Research Foundation (DFG,

Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence

Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of Excellence

“Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische

Universität Dresden. This work was also in part sponsored by the Federal

Ministry of Education and Research (BMBF) within the program

”Twenty20 - Partnership for Innovation” under contract 03ZZ0528E - ”fast

robotics”, within the project VERITAS under the project number 01IS18073

and as part of the project “TACNET 4.0” under grant 16KIS0719. This

research was co-financed by public funding of the state of Saxony/Germany.

Authors’ contributions

AT performed the simulations, generated the plots, and drafted the

manuscript with input from all authors. ES drafted the section about

literature research. GF and NF proposed to investigate the prediction of

small-scale fading for URLLC and supervised the findings of this work. All

authors contributed to the development of the idea and the interpretation

of the results.

Acknowledgements

We thank the Center for Information Services and High Performance

Computing (ZIH) at Technische Universitat Dresden for generous

allocations of computer time.

Author details
1Vodafone Chair Mobile Communications Systems, Technische Universität

Dresden, Germany. 2Centre for Tactile Internet with Human-in-the-Loop

(CeTI). 3Barkhausen Institut, Dresden, Germany.

References
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24. Stüber, G.: Principles of Mobile Communication. Springer, New York

(2017)

25. Kay, S.: Fundamentals of Statistical Signal Processing: Estimation

Theory. Prentice Hall, New Jersey (1993)

26. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition

Letters 27, 861–874 (2006)

27. Oppenheim, A., Verghese, G.: Signals, Systems and Inference. Pearson,

New York (2015)

28. Baddour, K., Willink, T.: Improved estimation of the Ricean K-factor

from I/Q fading channel samples. IEEE Transactions on Wireless

Communications 7, 5051–5057 (2008)

29. Aboutanios, E., Mulgrew, B.: Iterative frequency estimation by

interpolation on Fourier coefficients. IEEE Transactions on Signal

Processing 53, 1237–1242 (2005)

30. Goldsmith, A.: Wireless Communications. Cambridge University Press,

Cambridge (2005)

This is a post-peer-review, pre-copyedit version of an article published in EURASIP Journal on Wireless Communications and Networking. The final authenticated version is available online at: 
http://doi.org/10.1186/s13638-021-01964-w


